Emission reduction from refrigerants in industrial chillers

Refrigerants employed in chillers for industrial refrigeration applications are an important source of greenhouse gases once they are released in the environment. That’s why manufacturers of brazed plate heat exchangers, a key component in refrigerating groups and chillers, are committed to deploy more sustainable solutions aimed at reducing the carbon footprint of industrial refrigeration.

Brazed plate exchangers are employed in chillers in function of condensers, in case of water condensation, or as evaporators, which means they function as exchangers between the evaporating refrigerant and the fluid to be cooled, being it water, non-freezing solutions or oil.

The reduction of the environmental impact of industrial refrigeration is possible thanks to the use of micro channel exchangers, plate heat exchangers having a plate design with small pressing depth, approximately 2 mm, or 2,5, 3 mm depending on the type of fluid employed by the heat exchanger.

The challenge is then to create a machine able to ensure the same thermal efficiency but using a reduced amount of refrigerants. The aim is to have less amounts of freon or refrigerant gases in case of release in the environment. Having smaller and tiny passages between the plates of the exchanger allows therefore to have reduced amount of refrigerant flowing, achieving the same thermal work.


Usually, the size of these channels in exchangers must have a certain diameter, in order to avoid fouling and scaling effects, depending on the type of application. In case of chillers, the water flows within the exchangers in a closed-loop circuit and gets filtrated at the beginning, then remaining always the same re-circulated. So that it barely contains particles that can cause fouling or scaling. Furthermore, the exchanger/evaporator works at very low temperature levels, surely lower than temperatures causing carbonates precipitation, thus a further reason why these exchangers are not prone to fouling.

For all of the above reasons, that’s why it’s possible to employ much smaller passages, in fact reducing the amount of refrigerant that flows within the exchanger creating refrigerating groups characterized with a much lower carbon footprint.