

CHEMICAL (a) Chlorophonel	EPDM	FKM 1	CR	NBR	HNBR
(o)-Chlorophenol (p)-Cymene	4	1	4	4	4
1,2-Diaminoethane	1	4	2	2	2
1,4-Dihydroxybenzene	2	4	4	4	4
1-Butanethiol	4	1	4	4	4
1-Hexadecanol	1	5	1	1	111
2-Methylpentane	4	1	5	1	1
2-Propanone (Acetone) 2-Propene-1-ol	1	1	<u>4</u> 1	2	2
3,1-Dichloropropene	4	5	4	4	4
3-Methylpentane	4	1	5	1	1
Acet Aldehyde	2	4	5	4	4
Acet Aldehyde	2	4	5	4	4
Acetamide	1	4	1	11	1
Acetic Acid	1	3	2	3	3
Acetic Acid Chloride Acetic Acid Vapors	1	1 4	3	4	4
Acetic Acid Vapors Acetic acid, 96-99,5% (Glacial)	2	4	4	4	4
Acetic Anhydride	2	4	3	4	4
Acetone	1	4	4	4	4
Acetophenone	1	4	4	4	4
Acetylacetone	1	4	4	4	4
Acetylchloride	4	1	4	4	4
Acetylene Gas	1	1	2	1	1
Acetylene Tetrabromide Acrolein	1	4	3	3	3
Acrolein	4	4	4	4	4
Adipic Acid	1	1	1	1	1
Adipic Aciddiethylester	1	4	5	4	4
Aero Lubriplate	4	1	1	1	1
Aero safe 2300	1	4	4	4	4
Aero safe 2300 W	1	4	4	4	4
Aero Shell 1 AC Grease	4	1	2	1	1
Aero Shell 7 A Greece	4	1	2	1	1
Aero Shell 7 A Grease Aero Shell 750	4	1	4	2	2
Aero Shell Fluid 4	4	1	4	1	1
Aerozene 50 (50%Hydrazine,50%UDMH)	1	4	4	4	4
Air	1	1	1	1	1
Alcohol (Methanol)	1	4	1	1	1
Alkyl Arylsulphonic Acid	1	4	3	3	3
Alkyl Benzene	4	1	4	4	4
Allyl Alcohol (2-Propene-1-ol)	1	2	1	2	2
Allyl Chloride (3-Chloro-1-Propene) Allyl Ketone	1	5 4	3	4	4
Allyl Retorie Aluminium Acetat	1	4	2	2	2
Aluminium Acetat	1	4	2	2	2
Aluminium Bromide	1	1	1	1	1
Aluminium Fluoride	1	1	1	1	1
Aluminium Nitrate	1	1	1	1	1
Aluminium Phosphate	1	1	1	1	1
Aluminium Sulfate	1	1	1	1	1
Aluminium-Potassiumsulfate Solution	1	5	5	5	5
Aluminum Chloride Solution Aluminum Hydroxide Solution	1	1	1	1	1
Aluminum Sulphate Solution	1	1	1	1	1
Ambrex 33 (Mobile)	4	1	2	1	1
Ambrex 830 (Mobile)	4	1	2	1	1
Amines, primary (such as Methyl, Ethyl, Propyl, Allyl)	1	4	4	4	4
Aminoacetic Acid	1	1	1	2	2
Ammonia (gas)	1	4	1	1	1
Ammonia (gas, hot)	2	4	2	4	4
Ammonia (liquid)	1	4	5	2	2
Ammonia Solution Ammonia, anhydrous	1	4	5 1	2 1	2
Ammonia, annydrous Ammonia, aqueous Solution	1	4	1	3	3
Ammonia-Lithium	2	4	4	2	2
Ammonium Acetate	1	4	2	1	1
Ammonium Carbonate	1	4	2	1	1
Ammonium Carbonate Solution	1	5	2	4	4
Ammonium Chloride	1	1	1	1	111

General Chemical Resistance of Rubber Materials					
s offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be en specifying a rubber for a given application, the most important of these are:					
Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers					
Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.					
Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance					

Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property

ELASTOMER LEGEND		
EPDM	ETHYLENE PROPYLENE DIENE MONOMER	
FKM	VITON (FLUOROCARBON RUBBER)	
CR	NEOPRENE (CHLOROPRENE)	
NBR	AUTOU E (DUNA AV)	
NBK	NITRILE (BUNA N)	
HNBR	HYDROGENATED NBR	

3

Ammonium Chloride Solution

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 $\ensuremath{^{\star}}$ Some effects from exposure with some loss of physical properties. * Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 <u>A-D</u> E-M N-Q R-T QUICK FIND <u>U-Z</u>

CUEMICAL	EDDM	FKM	CD.	NDD	LINDD
CHEMICAL	EPDM		CR	NBR	HNBR
Ammonium Fluoride	1	2	1	4	1
Ammonium Hydroxide Ammonium Hydroxide Solution	1	4	1	4	4
Ammonium Nitrate Solution	1	5	1	1	1
Ammonium Nitrite	1	5	2	1	1
Ammonium Phosphate, Monobasic, Dibasic, Tribasic	1	5	1	1	1
Ammonium Sulfate Solution	1	4	1	1	1
Ammonium Sulfide	1	4	2	2	2
Ammonium Thiocyanate	1	5	5	1	1
Amyl Acetate	1	4	4	4	4
Amyl Alcohol	1	2	2	2	2
Amyl Borate	4	5	1	1	1
Amyl Chloride	4	1	4	4	4
Amyl Naphtalene	4	1	4	4	4
Anderol L-774	4	1	4	1	1
Aniline Chlorohydrate	2	2	2	2	2
Aniline Liquid	1	4	4	4	4
Animal Fats	2	1	2	1	1
Anisole	4	4	4	4	4
Antimony Chloride	1	1	2	1	1
Antimony Chloride, dry	1	1	1	1	1
Aqua Regia (Nitric Acid/Hydrochloric Acid)	4	4	4	4	4
Argon Gas	1	1	1	1	1
Aromatic Fuels (up to 50% Aromatic)	4	1	4	1	1
Aromatic Hydrocarbons (100% Aromatic)	4	1	4	4	4
Arsenic Acid	1	1	1	1	1
Arsenic Acid, Solution	1	11	1	1	11
Asphalt, Emulsion	4	11	2	2	2
ASTM Test Fuel A	4	1	2	1	1
ASTM Test Fuel B	4	1	4	1	1
ASTM Test Fuel C	4	1	4	2	2
ASTM-Oil IRM 902	4	1	2	1	1
ASTM-Oil IRM 903	4	1	4	1	1
ASTM-Oil No.1	4	1	2	1	1
ASTM-Oil No.2	4	1	2	1	1
ASTM-Oil No.3	1	1	2	1 4	1 4
ATM-Brake Fluid (Glycolbased) Automatic-Transmission Fluid	4	1	2	1	1
Automotive Gasoline	4	1	4	1	1
Barium Carbonate	1	1	5	1	1
Barium Chloride Solution	1	1	1	1	1
Barium Hydroxide Solution	1	1	1	1	1
Barium Nitrate Solution	1	1	1	1	1
Barium Sulfate	1	1	1	1	1
Barium Sulfide Solution	1	1	1	1	1
Battery Acid (Sulfuric Acid diluted)	1	1	4	4	4
Beef Tallow	4	1	2	1	1
Beer	1	1	1	1	1
Beet Sugar Sap	1	1	2	1	1
Benzaldehyde	2	4	4	4	4
Benzenesulfonic Acid	5	1	2	4	4
Benzine (Gasoline)	4	1	4	1	1
Benzine 50 / Benzene 30 / Ethanol 20	4	2	4	4	4
Benzine 50 / Benzene 50	4	2	4	4	4
Benzine 60 / Benzene 40	4	2	4	4	4
Benzine 70 / Benzene 30	4	11	4	2	2
Benzine 80 / Benzene 20	4	1	4	2	2
Benzoic Acid, Solution	2	1	2	2	2
Benzol (Benzene)	4	2	4	4	4
Benzophenone	2	1	5	5	5
Benzyl Alcohol	2	1	2	4	4
Benzyl Chloride	4	1	4	4	4
Biphenyl	4	1	4	4	4
Bitumen	4	1	4	4	4
Black Liquor	2	2	2	2	2
Blast Furnace Gas	4	1	4	4	4
Blast Furnace Gas	4	1	4	4	4
Bleach Solution	1	11	4	4	4
Bleaching Powder Solution	1	1	2	3	3
Boiler Feed Water	1	2	3	2	2
D 0"				1	1
Bone Oil Borax (Sodiumborate)	1	1	2	2	2

General Chemical Resistance of Rubber Materials				
s offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be en specifying a rubber for a given application, the most important of these are:				
Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers				
Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.				
Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance				

2

3

ELASTOMER LEGEND		
EPDM		
EPDIN	ETHYLENE PROPYLENE DIENE MONOMER	
FKM	VITON (FLUOROCARBON RUBBER)	
CR	NEOPRENE (CHLOROPRENE)	
NBR	NITRILE (BUNA N)	
HNBR	HYDROGENATED NBR	

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 $\ensuremath{^{\star}}$ Some effects from exposure with some loss of physical properties. * Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 E-M N-Q R-T QUICK FIND <u>U-Z</u> A-D

CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Borax Solutions	1	2	4	2	2
Boric Acid	1	1	2	1	1
Brake Fluids	1	4	2	4	4
Bromine Solution in Water	4	2	4	4	4
Bromine Solution in Water Bromine Vapour	4	1 2	4	4	4
Bromobenzene	4	1	4	4	4
Bromochlorotrifluoroethan	4	1	4	4	4
Bunker Oil	4	1	4	2	2
Butadiene	4	2	4	4	4
Butandiol	1	4	2	1	1
Butane	2	1	2	1	1 1
Butanole Butantriol	1	1	2	1	1
Butene	4	1	3	2	2
Buthylphenol	4	2	4	4	4
Butter	2	1	2	1	1
Buttermilk	1	1	1	1	1
Butyl Acetate	2	4	4	4	4
Butyl Acetate	2	4	4	4	4
Butyl Acrylate Butyl Alcohol	1	1	2	1	<u>4</u> 1
Butyl Anine	5	4	4	4	4
Butyl Carbitol	1	3	3	4	4
Butyl Cellosolve	1	4	3	3	3
Butyl Diglycol	1	1	5	1	1
Butyl Phthalate	1	4	4	4	4
Butyl Pyrocatechol	2	1	5	4	4
Butyl Stearate	1	1	4	2	2
Butylbenzoate Butylene	4	1	3	2	2
Butylether	4	4	4	4	4
Butyraldehyd	2	4	4	4	4
Butyraldehyd	2	4	4	4	4
Butyric Acid	4	1	3	2	2
Butyric Acid Butyl Ester	2	2	4	4	4
Calcium Acetate	1	<u>4</u> 1	2 5	1	2
Calcium Bisulfate Calcium Bisulfide Solution	1	2	2	2	2
Calcium Carbonate	1	1	1	1	1
Calcium Carbonate Slurry	1	1	1	1	1
Calcium Chloride	1	1	1	1	1
Calcium Chloride, brine	1	1	1	1	1
Calcium Cyanide	1	5	1	1	1
Calcium Hydroxide Solution	1	1	1	1	1
Calcium Hypochlorite Solution Calcium Nitrate	1	1	1	3 1	3 1
Calcium Oxide	1	1	5	1	1
Calcium Phosphate Slurry	1	1	2	1	1
Calcium Silikate	1	1	1	1	1
Calcium Sulfate	1	1	5	1	1
Calcium Sulfide	1	1	1	1	1
Calcium Sulfite	1	1	1	1	1
Calcium Thiosulfate Caliche Solution (Sodium Nitrate)	1	1	2	2	2
Campher	4	2	2	1	1
Campher Oil	4	2	4	1	1
Cane Sugar Sap	1	1	5	1	1
Carbitol	2	2	2	2	2
Carbolic Acid (Penole)	2	1	4	4	4
Carbolineum	2	1	5	2	2
Carbon Dioxide, dry	2	1	2	1	1
Carbon Dioxide, wet Carbon Disulfide	4	1	4	4	4
Carbon Disulfide	4	1	4	4	4
Carbon Monoxide	1	2	2	1	1
Carbonic Acid	1	1	2	1	1
Carboxylic Acids	1	1	1	1	1
Casein	2	1	1	1	1
Castor Oil	2	1	1	1	1
Cellosolve (2-Ethoxyethanol) Cellulose	2	4	2	2	2
Cellulose		4			

	General Chemical Resistance of Rubber Materials					
	following is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be sidered when specifying a rubber for a given application, the most important of these are:					
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers					
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.					
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance					
4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property					

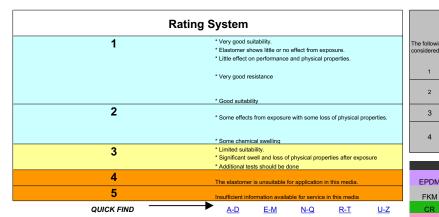
ELASTOMER LEGEND		
EPDM	ETHYLENE PROPYLENE DIENE MONOMER	
FKM	VITON (FLUOROCARBON RUBBER)	
CR	NEOPRENE (CHLOROPRENE)	
NBR	NITRILE (BUNA N)	
HNBR	HYDROGENATED NBR	

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 $\ensuremath{^{\star}}$ Some effects from exposure with some loss of physical properties. Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 E-M N-Q R-T QUICK FIND A-D <u>U-Z</u>

CHEMICAL	EDDM	EKM	CD	NDD	LINDD
CHEMICAL Celluloseacetat	EPDM 2	FKM 4	CR 4	NBR 1	HNBR 1
Chile Salpetre (Sodium Nitrate)	1	1	2	2	2
Chinawood Oil	4	1	2	1	1
Chloracetic Acid	11	4	4	4	4
Chloracetic Acid Ethylester Chloric Acid	2	1 2	4	4	4
Chloride of Lime	1	1	4	4	4
Chlorine Dioxide	3	1	4	4	4
Chlorine gas, anhydrous	1	11	3	3	3
Chlorine Water	2	1	4	4	4
Chlorine, liquid Chloroacetaldehyde	1	4	4	4	4
Chloroacetone	1	4	4	4	4
Chloroamine	1	4	1	1	1
Chlorobenzene	4	2	4	4	4
Chlorobromomethane Chlorobutadiene	2	2 2	4 4	4	4
Chloroform	4	2	4	4	4
Chloroform	4	2	4	4	4
Chloromethyl Ether	3	4	4	4	4
Chloronaphthalene	4	1 4	4	4	4
Chlorosulfonic Acid Chlorothene	3	2	4	4	4
Chlorotoluene	4	1	4	4	4
Chrome Alum	1	1	1	1	1
Chromic Acid	3	1	4	4	4
Chromo sulfuric Acid	1	1 2	2	1	1
Cider Citric Acid	1	1	1	1	1
Citrous Oils	4	1	2	2	2
Coal Tar	4	2	5	2	2
Cobalt Chlorite	1	1	1	1	1
Coca-Cola Cocoa Butter	1	2 1	2	1	1
Coconut Grease	4	1	2	1	1
Coconut Oil	4	1	2	1	1
Coconut, Fatty Acid	4	1	2	1	11
Cod-liver Oil	1	1	2 1	1	1
Coffee Coffee Extract	1	1	1	1	1
Coke Oven Gas	4	1	4	4	4
Copper Acetate Solution	2	4	3	4	4
Copper Ammonium Acetate	2	4	3	4	4
Copper Chloride, Solution Copper Cyanide	1	1	1	1	1
Copper Gyanide Copper Fluoride	1	1	2	2	2
Copper Nitrate	1	1	2	2	2
Copper Sulfate (Blue Vitriol) Solution	1	1	1	1	1
Corn Oil	4	1	2	1	1
Cotton Oil Cottonseed Oil	3	1	3 2	1	1
Cresol	4	1	4	4	4
Crontonaldehyde	1	4	4	4	4
Crude Oil	4	1	4	2	2
Crude Oil Cumene	4	1	4	2	4
Cuprous Ammonia Acetate Solution	1	4	4	4	4
Cyanic Acid	1	1	2	2	2
Cyanic Acid Solution	1	1	2	2	2
Cyclohexane Cyclohexanole	4	1	3	1	1
Cyclohexanone	4	4	4	2 4	4
Cyclohexanone	4	4	4	4	4
Cyclohexylamine	3	4	4	4	4
DDT Solutions (Kerosene Solvent)	4	1	3	1	1
DDT Solutions (Toluene Solvent)	4	1	4	4	4
Decalin (Decahydronaphtalene) Decane	4	1	4	1	1
Decarie	1	1	1	1	1
Dextrose	1	1	5	1	1
Diacetone	1	4	5	5	5
Diacetone Alcohol	1	4	2	4	4

	General Chemical Resistance of Rubber Materials					
The following is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be considered when specifying a rubber for a given application, the most important of these are:						
	1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers				
	2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.				
	3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance				
	4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property				

	ELASTOMER LEGEND
EPDM	ETHYLENE PROPYLENE DIENE MONOMER
FKM	VITON (FLUOROCARBON RUBBER)
CR	NEOPRENE (CHLOROPRENE)
NBR	NITRILE (BUNA N)
HNBR	HYDROGENATED NBR



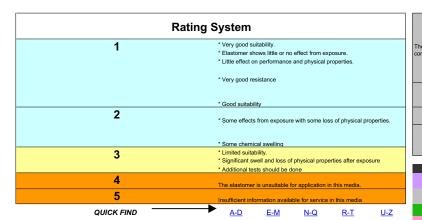
CUENICAL	5004	E1/14	-	MDD	
CHEMICAL	EPDM	FKM	CR	NBR	HNBR
<u>Diamylamine</u> Diazinone	1 4	2	4	4	4
Dibenzyl Sebacate	2	2	4	4	4
Dibenzylether	2	3	5	4	4
Dibromodifluoromethane	2	5	4	4	4
Dibromomethylbenzene	4	1	4	4	4
Dibutyl Ether	4	4	4	4	4
Dibutyl Phthalate	2	3	4	4	4
Dibutyl Sebacate	2	2	4	4	4
Dibutylamine Dichloro Acetic Acid	4	4	4	4	4
Dichloro Acetic Acid Methylester	1	4	4	4	4
Dichlorobutane	4	1	4	2	2
Dichlorobutylene	4	2	4	4	4
Dichloroethane	4	2	4	4	4
Dichloroethylene	4	2	4	4	4
Dichloro-iso-propylene ether	4	4	4	4	4
Dichloromethane	4	2	4	4	4
Dichloropentane	4	1	4	4	4
Dicholorobenzene Dicyclohexylamine	4	4	4	4	4
Diesel Fuel	4	1	4	1	1
Diesel Oil	4	1	4	1	1
Diethanolamine	2	4	4	4	4
Diethyl Amin	2	4	4	4	4
Diethyl Aniline	1	4	4	4	4
Diethyl Benzene	4	1	4	4	4
Diethyl Carbonate	4	1	4	4	4
Diethyl Ether	4	4	4	4	4
Diethyl Formaldehyde	1	4	3	3	3
Diethyl Hydrazine Diethyl Maleate	1	4	3	3	3
Diethyl Sebacate	2	2	4	4	4
Diethyl Sulfate	5	4	5	4	4
Diethylene Glycol	1	1	1	1	1
Diethylene Triamine	1	4	4	4	4
Diglycolic Acid	1	1	2	4	4
Dihexyl Phthalic Acid Ester	5	4	4	4	4
Dihydroxy Tartaric Acid (Tartaric Acid)	2	1	1	1	1
Di-Isobutyl Ketone	1 4	<u>4</u> 1	4	2	2
Di-Isobutylene Di-Isooctyl Sebacate	2	2	4	4	4
Di-Isopropyl Benzene	4	1	4	4	4
Di-Isopropyl Ketone	1	4	4	4	4
Dimethyl Amine	2	4	4	4	4
Dimethyl Aniline	2	4	4	4	4
Dimethyl Ether	2	4	4	4	4
Dimethyl Formamide	2	4	4	2	2
Dimethyl Hydrazine	1	4	2	2	2
Dimethyl Rhenol	1	4	4	4	4
Dimethyl Phenol Dimethyl Phthalate	2	2	4	4	4
Dimethyl Prithalate Dimethylbutane	4	1	2	1	1
Dinitro Toluene	4	4	4	4	4
Dinitrogene Oxid	2	1	1	1	1
Dioctyl Amine	1	4	4	4	4
Dioctyl Phthalate	2	2	4	4	4
Dioctyl Sebacate	2	2	4	4	4
Dioxane	2	4	4	4	4
Dioxolane	2	4	4	4	4
Dipentene Diphenyl	4	1	4	2	4
Diphenyl Diphenyl Ether	4	2	4	4	4
Diphenyle Oxide	4	1	5	4	4
Dipropylene Glycol	2	2	2	2	2
Dithionite	1	1	2	2	2
Divinyl Benzene	4	1	4	4	4
DMT (Dimethyl Terephthalate)	1	1	4	4	4
DNCB (Dinitrochlorobenzene)	4	1	4	4	4
Dodecanol	2	1	1	2	2
Dodecanol	2	1	1	2	2
Domestic Fuel Oils	4	1	2	1	1

General Chemical Resistance of Rubber Materials
ing is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be I when specifying a rubber for a given application, the most important of these are:
Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.
Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance

2

3

ELASTOMER LEGEND				
EPDM	ETHYLENE PROPYLENE DIENE MONOMER			
	ETHICENET NOT TEENE DIENE MONOMEN			
FKM	VITON (FLUOROCARBON RUBBER)			
CR	NEOPRENE (CHLOROPRENE)			
NBR	NITRILE (BUNA N)			
HNBR	HYDROGENATED NBR			

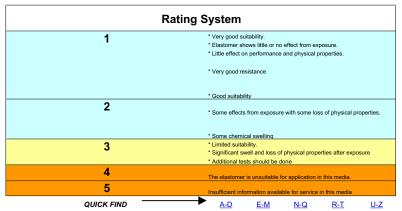


CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Dowtherm A	4	1	4	4	4
Dowtherm E	4	1	4	4	4
Duodecanol (Laurylalcohol)	2	1	1	2	2
Epichlorhydrin	2	4	4	4	4
Essential Oils Ethane	4	2 1	2	1	1
Ethanol Amine	2	4	3	3	3
Ether	3	4	4	4	4
Ethyl Acetate	2	4	4	4	4
Ethyl Acetate	2	4	4	4	4
Ethyl Acetate	2	4	4	4	4
Ethyl Acetate Ethyl Acrylate	5	4	4	4	4
Ethyl Alcohol, Ethanol	1	4	1	1	1
Ethyl Benzene	4	2	4	4	4
Ethyl Bromide	4	1	4	2	2
Ethyl Cellulose	2	4	2	2	2
Ethyl Hexanole	2	1	1	1	1
Ethyl Oxalate Ethyl Pentachlorobenzene	4	1	4	4	4
Ethyl Pyridine	1	4	4	4	4
Ethyl Sulfate (Diethyl Sulfate)	1	4	1	4	4
Ethylacrylate	5	4	4	4	4
Ethylchloride	2	2	2	4	4
Ethylchloroacetate	2	1	2	2	2
Ethylene	3	1	3	1 4	1 4
Ethylene Bromide Ethylene Chloride	2	2	2	5	5
Ethylene Chlorohydrin	2	4	2	4	4
Ethylene Diamine	1	4	4	4	4
Ethylene Dibromide	4	1	4	4	4
Ethylene Dichloride	4	1	4	4	4
Ethylene Glycol	1	1	2	1	1
Ethylene Glycol Ethylether (Cellosolve) Ethylene Oxide	2	4	4	4	4
Ethylene Oxide Ethylene Silicate	1	1	1	<u>4</u> 1	1
Ethylene Trichloride	3	2	4	4	4
Fats (animal/vegetable)	4	1	1	1	1
Fatty Acids	4	1	2	2	2
Ferric Chloride Solution	1	11	2	1	1
Ferric Nitrates	1	1	1	1	1
Ferric Sulfate (Ferric Vitrinol) Ferric Sulfate Solution	1	1	1	1	1
Fir Oil	4	1	4	2	2
Fish Oil	4	1	2	1	1
Fluorine	4	3	5	4	4
Fluorobenzene	4	2	4	4	4
Fluorosilicic Acid	1	1	2	2	2
Formaldehyde (Formalin-Solution)	1	4	4	3	3
Formaldehyde (Methanal) Formamide	2	2	4	2	2 2
Formic Acid	2	4	2	4	4
Freon 11	4	2	4	1	1
Freon 112	4	2	2	2	2
Freon 113	4	2	1	1	1
Freon 114	1	2	1	1	1
Freon 114 B2	4	2	2	2	2
Freon 115 Freon 12	2	2	1	2	2
Freon 13	1	2	1	1	1
Freon 13 B1	1	2	1	1	1
Freon 134 a	1	5	5	5	1
Freon 14	1	2	1	1	1
Freon 142 b	1	4	1	1	1
Freon 152 a	1	4	1	1	1
Freon 21 Freon 218	1	1	2 1	1	<u>4</u> 1
Freon 22	1	4	1	4	4
Freon 31	1	4	1	4	4
Freon 32	1	4	1	1	1
Freon 32 Freon 502 Freon BF	1 1 4	4 2 1	1 1 2	1 2 2	2 2

General Chemical Resistance of Rubber Materials
offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be specifying a rubber for a given application, the most important of these are:
Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers
service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a lynamic application.
Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance

Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property

	ELASTOMER LEGEND
EPDM	ETHYLENE PROPYLENE DIENE MONOMER
FKM	VITON (FLUOROCARBON RUBBER)
CR	NEOPRENE (CHLOROPRENE)
NBR	NITRILE (BUNA N)
HNBR	HYDROGENATED NBR



CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Hydroxylamine Sulfate	1	1	2	1	1
Hypochlorous Acid	2	1	4	4	4
Hypochlorous Acid	2	1	4	4	4
Ink	2	2	1	1	2
lodine lodine tincture	2	1	2	2	2
lodoform	1	1	5	5	5
lodoform	1	1	5	5	5
Iso-Butane	4	1	4	1	1
Iso-Butyl Alcohol	1	2	1	2	2
Iso-Butyl Methyl Ketone Iso-Butylene	1 4	<u>4</u> 1	4 4	<u>4</u> 1	<u>4</u> 1
Iso-Butyreldehyde	1	4	4	4	4
Iso-Cyanate	1	5	5	5	5
Iso-Dodecane	4	1	2	1	1
Iso-Octane	4	1	2	1	1
Iso-Pentane	4	1	4	1	1
Iso-Propyl-Acetate	2	1	2	2	2
Iso-Propyl-Alcohol Iso-Propyl-Benzene	4	1	4	4	4
Iso-Propyl-Chloride	4	1	4	4	4
Iso-Propyl-Ether	5	4	4	4	4
Jet Fuel JP3	4	1	4	1	1
Jet Fuel JP4	4	1	4	1	1
Jet Fuel JP5	4	1	4	1	1
Jet Fuel JP6	4	1	4	1	1
JP3 (Fuel) JP4 (Fuel)	4	1	4	1	1
JP5 (Fuel)	4	1	4	1	1
JP6 (Fuel)	4	1	4	1	1
JPX (Fuel)	4	4	2	1	1
Kerosene	4	1	4	1	1
Ketchup	1	1	1	1	1
Lactams Lactic Acid	2	1	<u>3</u>	2	2
Lanolin	4	1	2	1	1
Lanolin	4	1	2	1	1
Latex	1	1	1	1	1
Laughing Gas (N2O)	2	11	1	1	1
Lavender Oil	4	1	4	2	2
Lead Acetate Salt Solution	1	4	<u>4</u> 5	3 1	3
Lead Arsenate Lead Nitrate	1	<u>5</u> 1	2	1	1
Lead Nitrate Solution	1	5	1	1	1
Lead Sulfate	1	1	1	2	2
Lemon Juice	1	1	2	1	1
Ligroin	4	1	2	1	1
Lindol	1	4	4	4	4
Linoleic Acid	4	2	5 2	2	2
Linseed Oil Liqueurs	3 1	1	1	1	1
Lithium Bromide Brine	1	1	1	1	1
Lithium Chloride	1	1	1	1	1
Lithium Hydroxide	1	3	4	4	4
Machinery Oil (mineral)	4	1	2	1	1
Maganese Chloride (Solution)	1	1	1	1	1
Magnesium Acetate Solution Magnesium Chloride Solution	1	<u>4</u> 1	<u>4</u> 1	1	1
Magnesium Hydroxide (Solution)	1	2	2	2	2
Magnesium Silicate (Talcum)	1	1	1	1	1
Magnesium Sulfate (Epson Salts)	1	1	1	1	1
Maleic Acid	1	1	2	2	2
Maleic Acid	1	1	2	2	2
Maleic Anhydride Malic Acid	4	2	4	4	4
Malic Acid Margarine	2	1	2	1	1
Mayonaise		4	4	1	1
majoridioo	4				
Menthol	2	1	2	2	2
Mercaptans	2 1	1	2 4	4	4
Mercaptans Mercuric Chloride Solution	2 1 1	1 4 1	2 4 1	4 1	4 1
Mercaptans	2 1	1	2 4	4	4

General Chemical Resistance of Rubber Materials					
	g is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be when specifying a rubber for a given application, the most important of these are:				
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers				
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.				
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance				
4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property				

ELASTOMER LEGEND			
EPDM	ETHYLENE PROPYLENE DIENE MONOMER		
FKM	VITON (FLUOROCARBON RUBBER)		
CR	NEOPRENE (CHLOROPRENE)		
NBR	NITRILE (BUNA N)		
HNBR	HYDROGENATED NBR		

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 $\ensuremath{^{\star}}$ Some effects from exposure with some loss of physical properties. Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 E-M N-Q R-T QUICK FIND A-D <u>U-Z</u>

CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Freon C316	1	5	1	1	1
Freon C318	1	2	1	1	1
Freen MF	4	2	<u>4</u> 1	2	1
Freon PCA Freon TA	1	4	1	1	1
Freon TC	2	1	1	1	1
Freon TF	4	1	1	1	1
Freon TMC	2	1	2	2	2
Freon T-P35	1	1	1	1	1
Freon TWD602	1	1	2	2	2
Fruit Juices Fumaric Acid	5	1	2	1	1
Furan	4	4	4	4	4
Furfural (Furfurylaldehyde)	5	5	5	3	3
Furfurylalcohol	5	5	5	5	5
Gallic Acid	2	1	2	1	1
Gas Oil	4	1	2	1	11
Gasoline / Alcohol Mix	4	2	4	2	2
Gasoline, 100 Octane	4	1	4	1	1 1
Gasoline, 130 Octane Gasoline, aromatic	4	1	4	1	1
Gasoline, Ethyl and Regular	4	1	4	1	1
Gasoline, Refined	4	1	4	1	1
Gasoline, Sour	4	1	4	1	1
Gasoline, with Mercaptan	4	1	4	1	1
Gelatin	1	1	1	1	1
Generator Gas	4	1	2	1	1
Glaubers Salt Glucose solution	2	1	2	4	4
Glucose solution Glucose, aqueos	1	1	1	1	1 1
Glycerin (Glycerol)	1	1	1	1	1
Glycerol	1	1	1	1	1
Glycerol Chlorohydrin	2	2	4	4	4
Glycerol Triacetate (Triacetin)	1	4	2	2	2
Glycerol Trinitrate (Nitroglycerin)	1	1	2	4	4
Glycine	1	1	1	2	2
Glycolic Acid	1	2	2	1	1
HEF-3	1	1	<u>4</u> 1	2 1	1
Helium Gas Heptane	4	1	2	1	1
Hexachloro Acetone	1	4	4	4	4
Hexachloro Butadiene	4	1	4	4	4
Hexachloro Butadiene	4	1	4	4	4
Hexachloro Cyclohexane (Lindane)	4	1	4	5	5
Hexafluorosilicic Acid	2	02-gen	2	2	2
Hexafluorosilicic Acid	2	02-gen	2	2	2
Hexaldehyd	1	4	2	4	4
Hexalin (Cyclohexanol) Hexamine	1	1 4	2	1	1 4
Hexanal	2	4	5	5	5
Hexanal (Capronaldehyde)	2	4	5	5	5
Hexane	4	1	2	1	1
Hexanetriol	1	1	2	1	1
Hexene	4	1	2	2	2
Hexyl Alcohol	2	1	2	1	1
Hydrazine	1	3	2	2	2
Hydrazine Hydrate Hydrobromic Acid	1	3 1	2	2	2
Hydrochlorique Acid (Muriatic Acid) 37%	2	1	4	4	4
Hydrocyanic Acid	1	1	2	2	2
Hydrofluoric Acid (cold)	2	2	4	4	4
Hydrofluoric Acid (hot)	4	4	5	4	4
Hydrogen Chloride Gas	1	1	3	4	4
Hydrogen Fluoride	2	5	4	4	4
Hydrogen Peroxide, concentrated	4	1	4	4	4
Hydrogen Sulfide Hydrogen, Gas	1	1 1	1	3 1	3 1
Hydrogene Bromide, unhydrous	4	1	4	4	4
Hydrogensulfite Leach	1	1	2	4	4
Hydroquinone	2	4	4	4	4
Hydroxy Acetic Acid	1	4	4	4	4
Hydroxylamine	1	1	5	1	1

General Chemical Resistance of Rubber Materials						
	is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be when specifying a rubber for a given application, the most important of these are:					
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers					
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.					
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance					
4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property					

ELASTOMER LEGEND		
EPDM	ETHYLENE PROPYLENE DIENE MONOMER	
FKM	VITON (FLUOROCARBON RUBBER)	
CR	NEOPRENE (CHLOROPRENE)	
NBR	NITRILE (BUNA N)	
HNBR	HYDROGENATED NBR	



CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Mesityl Oxide	1	4	4	4	4
Methacrylic Acid	2	4	4	4	4
Methanal Methane	4	<u>2</u> 1	2	2 1	1
Methanol	1	4	2	2	2
Methoxy Benzene	4	4	4	4	4
Methoxy Butanol	2	1	2	1	1
Methyl Acetate Methyl Acetate	1	4	3	4	4
Methyl Acetoacetate	2	4	4	4	4
Methyl Acrylate	2	4	4	4	4
Methyl Alcohol	1	4	2	2	2
Methyl Amine Methyl Aniline	1 2	2	4	4	4
Methyl Bromide	4	1	4	4	4
Methyl Butyl Ketone	1	4	4	4	4
Methyl Carbonate	4	4	4	4	4
Methyl Cellosolve Methyl Cellulose	2	2	2	2	2
Methyl Chloride	4	2	4	4	4
Methyl Cyclopentane	4	2	4	4	4
Methyl Ethyl Ketone	2	4	4	4	4
Methyl Ethyl Ketone	2	4	4	4	4
Methyl Formate Methyl Formate	2	4	4	4	4
Methyl Glycol	2	4	4	4	4
Methyl Glycol Acetate (Ethyleneglycol)	2	4	4	4	4
Methyl Iso-Butyl Ketone	2	4	4	4	4
Methyl Iso-Propyl Ketone Methyl Methacrylate	4	4	4	4	4
Methyl Methacrylic Acid Ester	4	4	4	4	4
Methyl Oleate	2	1	5	4	4
Methyl Phenyl Ether (Anisole)	4	4	4	4	4
Methyl Pyrrolidone Methyl Salicylate	2	5	5 4	4	4
Methylene Chloride	4	2	4	4	4
Milk	1	1	1	1	1
Milk of Lime	1	2	2	4	4
Mine Gas (Methane)	2	1	2	1 00	1 00
Mineral Oil Mineral Spirits	4	1	3	02-gen 1	02-gen 1
Molasses	1	1	2	1	1
Monobromobenzene	4	2	4	4	4
Monochloroacetic Acid	1	4	4	4	4
Monochloroacetic Acid Ethyl Ester Monochlorobenzene	2	2	4	4	4
Monoethanol Amine	2	4	4	4	4
Mononitrochlorobenzene	4	1	4	4	4
Morpholine	2	5	3	4	4
Morpholine Muriatic Acid (HCI) (Hydrochloric Acid)	2	<u>5</u> 1	3 5	4	4
Muriatic Acid (HCI), diluted	1	1	2	2	2
Naphtha	4	1	4	4	4
Naphthalene	4	11	4	4	4
Naphthenic Acid	4	1	4	2	2
Naphtolen ZD Natural Gas	4	1	2	2 1	1
Neats Foot Oil	2	1	4	1	1
Neon Gas	1	1	1	1	1
Nickel Acetate	1	4	2	2	2
Nickel Chloride	1	1	1	1	1
Nickel Nitrate Nickel Sulfate	1	1	1	1	1
Nitrating Acids	1	4	4	4	4
Nitric Acid, concentrated	4	2	4	4	4
Nitric Acid, fuming	4	2	4	4	4
Nitro Benzene	1	1	3	4	4
Nitro Glycerin Nitro Glycol	1	1	2	4	4
Nitro Methane	2	4	4	4	4
Nitro Propane	2	4	4	4	4
Nitro Toluene	4	4	4	4	4

	General Chemical Resistance of Rubber Materials								
	llowing is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be lered when specifying a rubber for a given application, the most important of these are:								
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers								
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.								
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance								

ELASTOMER LEGEND					
EPDM	ETHYLENE PROPYLENE DIENE MONOMER				
	EINTLENE PROPTLENE DIENE MONOMER				
FKM	VITON (FLUOROCARBON RUBBER)				
CR	NEOPRENE (CHLOROPRENE)				
NBR	NITRILE (BUNA N)				
HNBR	HYDROGENATED NBR				

Ra	ating System				
1	* Very good suitability. * Elastomer shows little or no effect from exposure. * Little effect on performance and physical properties. * Very good resistance				
2	* Good suitability * Some effects from exposure with some loss of physical properties.				
3	Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done				
4 5	The elastomer is unsuitable for application in this media. Insufficient information available for service in this media				
QUICK FIND	A-D E-M N-Q R-T U-Z				

OUENDA	5004	F1/14		MDD	
CHEMICAL Nitrogon Coc	EPDM 1	FKM	CR 1	NBR 1	HNBR
Nitrogen Gas Nitrogen Tetroxide	4	4	1 4	4	4
Nonanol	1	1	5	4	4
Nut Oil	4	1	2	1	1
Octadecane	4	11	2	1	1
Octal	2	2	4	4	4
Octane Octanol (Octylalcohol)	1	1	4 2	2 2	2 2
Octylalcohol	1	1	2	2	2
Octylcresol	4	2	4	3	3
Oil of Turpentine	4	1	4	2	2
Olefin, crude	4	1	4	1	1
Oleic Acid	4	1	4	1	1
Oleic Alcohol Oleum (Sulfuric Acid, 0 to 50%)	1	1	1 4	1 4	1 4
Olive Oil	4	1	2	1	1
Ortho Dichloro Benzene	4	1	4	4	4
Oxalic Acid	1	1	2	2	2
Oxalic Acid	1	1	2	2	2
Ozone	1	1	2	4	03-feb
Palm Kernel Oil	4	1	1	1	1
Palm Oil	3	1	<u>4</u> 2	2	2
Palmitic Acid Para Dichloro Benzene	4	1	5	4	4
Paraffin	4	1	1	1	1
Paraffin	4	1	1	1	1
Paraffin Oil	4	1	1	1	1
Peanut Oil	4	11	4	1	1
Pectin	1	1	1	1	1
Penta Chloro Diphenyl Penta Chloro Phenol	2	3 5	<u>4</u> 5	4	4
Penta Chioro Phenoi Pentane	4	1	2	1	1
Pentanol	1	2	1	2	2
Perchloric Acid	2	1	2	4	4
Perchloric Acid	2	1	2	4	4
Perchloro Ethylene	4	2	4	4	4
Petroleum	4	11	2	1	1
Petroleum Ether Phenol	4	2	2	4	1 4
Phenyl Benzene	4	2	4	4	4
Phenyl Ether	4	4	4	4	4
Phenyl Hydrazine	4	2	4	4	4
Phosphine	1	2	2	4	4
Phosphine	1	2	2	4	4
Phosphor Trichloride	1	11	4	4	4
Phosphoric Acid Phosphoric Acid 45%	1	1	4 2	2	2
Photographic Developing Bath	2	1	1	1	1
Phthalic Acid	1	2	2	2	2
Phthalic Anhydride	1	5	5	5	5
Picoline, alpha	1	4	5	5	5
Picric Acid, Aqueous Solution	2	11	1	2	2
Pine Oil	4	1	4	2	2
Pineapple Juice Pinene	1 4	1	1 2	2	2
Piperidine	4	4	4	4	4
Polyvinyl Acetates	1	4	2	5	5
Potassium Acetate	1	2	2	2	2
Potassium Aluminium Sulfat	1	5	5	5	5
Potassium Bicarbonite	1	11	1	1	1
Potassium Bisulfate Potassium Borate	1	1	2	1	1 1
Potassium Bromate Potassium Bromate	1	1	2	1	1
Potassium Bromide	1	1	2	1	1
Potassium Carbonate	1	1	2	1	1
Potassium Chlorate	1	1	2	4	4
Potassium Chloride	1	1	2	1	1
	4	1	2	2	2
Potassium Chromate	1				
Potassium Cyanide	1	1	2	1	1
				1 1 1	1 1 1

		General Chemical Resistance of Rubber Materials						
		is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be hen specifying a rubber for a given application, the most important of these are:						
	1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers						
2 Service Conditions - A rubber which swells greatly might be suitable for static conditions, but of dynamic application.		Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.						
	3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance						
	4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property						

	ELASTOMER LEGEND					
EPDM	EPDM ETHYLENE PROPYLENE DIENE MONOMER					
FKM	VITON (FLUOROCARBON RUBBER)					
CR	NEOPRENE (CHLOROPRENE)					
NBR	NITRILE (BUNA N)					
HNBR	HYDROGENATED NBR					

CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Potassium Hydroxide, Potassium Lye	1	4	2	2	2
Potassium Hypochlorite (Javelle Water) Potassium Hypochlorite (Javelle water)	2	1	5 5	2	2
Potassium Indide	1	1	2	2 1	1
Potassium Nitrate	1	1	2	2	2
Potassium Perchlorate	1	1	2	4	4
Potassium Perfluoroacetate	1	4	2	2	2
Potassium Permanganate	1	1	2	4	4
Potassium Persulfate	1	11	2	4	4
Potassium Phosphate	1	1	5	1	1
Potassium Sulfate	1	1	2	1	1
Potassium Sulfite Propane	1	1	2	1	1
Propanol	1	1	1	2	2
Propanol	1	1	1	2	2
Propinyl Alcohol	1	1	1	1	1
Propion Aldehyde	1	4	4	4	4
Propionic Acid	5	1	2	1	1
Propyl Acetate	2	4	4	4	4
Propyl Acetone	1	4	4	4	4
Propyl Amine Propyl Nitrate	2	4	4	4	4
Propylene	4	1	4	4	4
Propylene Dichloride	4	5	5	4	4
Propylene Glycol	1	1	1	1	1
Propylene Oxide	2	4	4	4	4
Pyridine	4	4	4	4	4
Pyrrole	4	4	4	4	4
Rapeseed Oil	4	1	2	2	2
Roast Gas (dry) Rosin (Colophony)	1	1	1	1	1 1
Salicylic Acid	1	1	1	2	2
Salicylic Acid	1	1	1	2	2
Sea Water	1	2	2	1	1
Sea Water	1	2	2	1	1
Sea Water	1	2	2	1	1
Sewage	1	11	2	1	1
Silcone grease	1	1	1	1	1
Silicic Acid	11	1	2	1	1
Silicon Dioxide Silicone Oil	1	1	<u>5</u>	1	1
Silver Cyanide Solution	4	1	1	4	4
Silver Nitrate	1	1	2	2	2
Silver Salts	1	1	1	1	1
Skydrol 500	1	4	4	4	4
Skydrol 7000	1	2	4	4	4
Soap Solution	1	11	2	1	1
Soda (Natrium Carbonate)	1	1	1	1	1
Sodium Acetate	1	4	2	2	2
Sodium Benzoate Sodium Bicarbonate Solution	1	1	1	1	1
Sodium Bicarbonate Solution Sodium Bisulfate Solution	1	1	1	1	1
Sodium Bisulfite Solution	1	1	1	1	1
Sodium Borate (Borax)	1	1	1	2	2
Sodium Carbonate (Soda Ash)	1	1	1	1	1
Sodium Carbonate Solution	1	1	1	1	1
Sodium Chlorate	1	1	2	2	2
Sodium Chloride (Common Salt)	1	1	1	1	1
Sodium Chloride Solution	1	1	1	1	1
Sodium Chlorite Sodium Cyanide Solution	1	5	1	2	2
Sodium Dichromate	1	1	1	2	2
Sodium Fluoride	1	1	5	1	1
Sodium Hydroxide	1	3	2	2	2
Sodium Hydroxide, Caustic Soda	1	2	2	2	2
Sodium Hypochlorite Solution	1	1	2	2	2
Sodium Nitrate	1	1	2	2	2
Sodium Nitrite	1	1	2	4	4
Sodium Peroxide Solution	1	11	2	2	2
	4				
Sodium Phosphate Sodium Silicate Solution	1	1	1	1	1

	General Chemical Resistance of Rubber Materials						
ne following is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be insidered when specifying a rubber for a given application, the most important of these are:							
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers						
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.						
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance						
4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property						

ysical properties after exposure				
, , , , , , , , , , , , , , , , , , , ,				ELASTOMER LEGEND
pplication in this media.		EPDM	ETHYLENE PROPYLENE DIENE MONOMER	
for service in this media			FKM	VITON (FLUOROCARBON RUBBER)
N-Q	R-T	<u>U-Z</u>	CR	NEOPRENE (CHLOROPRENE)
			NBR	NITRILE (BUNA N)
CR	NBR	HNBR	HNBR	HYDROGENATED NBR
2	2	2		
5	2	2		
5	2	2		
_				

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 $\ensuremath{^{\star}}$ Some effects from exposure with some loss of physical properties. Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 <u>E-M</u> QUICK FIND A-D N-Q R-T <u>U-Z</u>

CHEMICAL	EDDM	EKM	CB	NDD	UNDD
CHEMICAL Sodium Sulfhydrate Solution	EPDM 1	FKM 1	CR 1	NBR 1	HNBR 1
Sodium Sulfide	1	1	2	2	2
Sodium Sulfite Solution	1	1	1	1	1
Sodium Tetraborate Solution	1	1	2	2	2
Sodium Thiosulfate	1	1	1	2	2
Sodium Thiosulfate (Antichlor) Soy Bean Oil	1 4	1	1 2	1	1
Soy Bean Oil Sperm Oil	2	1	5	1	1
Spermaceti	4	1	2	1	1
Spirits	1	1	1	1	1
Stannic Chloride Solution	1	1	4	1	11
Starch	1	1	1	1	1
Stearic Acid Stoddard Solvent	2	1	2	1	1
Styrene	4	1	4	4	4
Succinic Acid	1	1	2	1	1
Sucrose Sap	1	1	2	1	1
Sugar Solutions	1	1	2	1	1
Sulfur	1	1	1	4	4
Sulfur Hexafluoride (SF6) Sulfur Chloride	1 4	1	1 4	2	2
Sulfur Dioxide (SO2)	1	2	4	4	4
Sulfur Dioxide Liquid (anhydrous)	1	4	4	4	4
Sulfur Dioxide, gaseous	1	4	4	4	4
Sulfuric Acid (0 to 50%)	1	1	4	4	4
Sulfuric Acid, diluted	1	11	4	2	2
Sulfurous Acid	2	1	5	5	5
<u>Talcum</u> Tallow	2	1	<u>5</u> 2	1	1
Tannins	2	1	2	2	2
Tar	4	2	4	4	4
Tartaric Acid	2	1	2	1	1
Tetrachloroethane	4	2	4	4	4
Tetrachloroethane	4	2	4	4	4
Tetrachloromethane	4	1	4	4	4
Tetrachloromethane Tetrachoroethylene	4	1	4	4	4
Tetraethyl Lead	4	1	4	2	2
Tetraethyl Lead	4	1	4	2	2
Tetrahydrofuran	4	4	4	4	4
Thionyl Chloride	2	1	4	4	4
Thiophene	4	4	4	4	4
Titanium Tetrachloride Toluene (Toluol)	2	2	2	2	2
Town Gas	4	1	4	2	2
Town Gas	4	1	4	2	2
Transformer Oil	4	1	4	2	2
Triacetin (Glycerine Triacetate)	1	4	2	2	2
Triaryl Phosphate	1	11	4	4	4
Tributoxy Ethyl Phosphate	2	2	2	4	4
Tributyl Marcaptane Tributyl Phosphate	2	1 4	4	4	4
Trichloro Benzene	5	1	4	5	5
Trichloro Ethane	4	1	4	4	4
Trichloro Ethyl Phosphate	5	4	4	4	4
Trichloro Ethylene	4	2	4	4	4
Trichloroacetic Acid	2	4	4	2	2
Tricresyl Phosphate	2	2	4	4	4
Triethanolamine Triethyl Borane	5	<u>5</u> 1	5 5	5 5	5 5
Triethyl Glycol	1	1	5	1	1
Triethylaluminium	4	2	5	5	5
Trifluoro Ethane	4	1	4	4	4
Tri-Iso-Propyl Benzene	4	1	4	1	1
Trinitrotoluene (TNT)	4	2	2	4	4
Trioctyl Phosphate Trisodium Phosphate Solution	1	1	2	<u>4</u> 1	1
Turpentine	4	1	4	1	1
Urea	1	1	2	1	1
Vaseline	4	1	2	1	1
Vaseline Oil	4	1	2	1	1
Vegetable Juices	1	1	2	1	1

	General Chemical Resistance of Rubber Materials						
The following is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be considered when specifying a rubber for a given application, the most important of these are:							
	1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers					
	2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.					
	3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance					
	4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have					

ELASTOMER LEGEND				
EPDM	ETHYLENE PROPYLENE DIENE MONOMER			
FKM	VITON (FLUOROCARBON RUBBER)			
CR	NEOPRENE (CHLOROPRENE)			
NBR	NITRILE (BUNA N)			
HNBR	HYDROGENATED NBR			

Rating System Very good suitability. Elastomer shows little or no effect from exposure. Little effect on performance and physical properties. 1 * Very good resistance * Good suitability 2 * Some effects from exposure with some loss of physical properties. Some chemical swelling Limited suitability. Significant swell and loss of physical properties after exposure Additional tests should be done 3 4 The elastomer is unsuitable for application in this media. 5 QUICK FIND E-M <u>U-Z</u> A-D N-Q R-T

CHEMICAL	EPDM	FKM	CR	NBR	HNBR
Vegetable Oils	4	1	2	1	1
Vinegar	1	2	2	2	2
Vinyl Acetate	5	5	5	5	5
Vinyl Chloride, liquid	5	5	5	5	5
Vinylidene Chloride	4	2	4	4	4
Waste Gas (cont. Carbon Dioxide)	1	1	1	1	1
Waste Gas (cont. Carbon Monoxide)	1	1	1	1	1
Waste Gas (cont. Hydrogen Chloride)	1	1	1	2	2
Waste Gas (cont. Hydrogen Fluoride)	1	1	1	1	1
Waste Gas (cont. Nitrous Fumes)	1	1	1	5	5
Waste Gas (cont. Sulfur Dioxide)	1	1	1	2	2
Waste Gas (cont. Sulfuric Acid)	1	1	2	4	4
Water steam < 150°C	1	4	4	4	4
Water steam > 150°C	2	4	4	4	4
Water to 180°F (80°C)	1	2	2	2	1
Water to 275°F (135°C)	1	3	3	4	3
Water vapour < 140°C	1	4	4	4	3
Water vapour > 140°C	2	4	4	4	4
Wax Alcohols	4	1	2	1	1
Wine + Whiskey	1	1	1	1	1
Wood Spirit	2	4	4	4	4
Xenon	1	1	1	1	1
Xylene (Xylol)	4	2	4	4	4
Xylidines (aromatic Amines)	2	4	4	4	4
Yeast	1	1	1	1	1
Zeolites	1	1	1	1	1
Zinc Acetate	1	4	2	2	2
Zinc Chloride Solutions	1	1	1	1	1
Zinc Sulfate	1	1	1	1	1

General Chemical Resistance of Rubber Materials					
The following is offered as a general guide to the suitability of various rubbers in chemicals. Several factors must be considered when specifying a rubber for a given application, the most important of these are:					
1	Service Temperature - Higher temperatures cause greater effects of all chemicals on rubbers				
2	Service Conditions - A rubber which swells greatly might be suitable for static conditions, but could fail in a dynamic application.				
3	Grade of Polymer - Many types of polymer have various grades and this can affect chemical resistance				
4	Types of Compound - Compounds designed or specified for other outstanding properties, may not have such good chemical resistance as a compound specifically designed for this property				

ELASTOMER LEGEND			
EPDM	ETHYLENE PROPYLENE DIENE MONOMER		
	ETTTEENET TOT TEENE DIENE MONOMEN		
FKM	VITON (FLUOROCARBON RUBBER)		
CR	NEOPRENE (CHLOROPRENE)		
NBR	NITRILE (BUNA N)		
HNBR	HYDROGENATED NBR		